## CME 324: ITERATIVE METHODS SPRING 2005/06 ASSIGNMENT 1

## GENE H. GOLUB

**1.** Consider an  $n \times n$  tridiagonal matrix of the form

$$T_{\alpha} = \begin{bmatrix} \alpha & -1 & & & \\ -1 & \alpha & -1 & & \\ & -1 & \alpha & -1 & \\ & & -1 & \alpha & -1 \\ & & & -1 & \alpha \end{bmatrix}$$

where  $\alpha$  is a real parameter.

(a) Verify that the eigenvalues of  $T_{\alpha}$  are given by

$$\lambda_j = \alpha - 2\cos(j\theta), \qquad j = 1, \dots, n$$

where

$$\theta = \frac{\pi}{n+1}$$

and that an eigenvector associated with each  $\lambda_j$  is

$$\mathbf{q}_j = [\sin(j\theta), \sin(2j\theta), \dots, \sin(nj\theta)]^{\top}.$$

Under what condition on  $\alpha$  does this matrix become positive definite?

- (b) Now take  $\alpha = 2$ .
  - (i) Will the Jacobi iteration converge for this matrix? If so, what will its convergence factor be?
  - (ii) Will the Gauss-Seidel iteration converge for this matrix? If so, what will its convergence factor be?
  - (iii) For which values of  $\omega$  will the SOR iteration converge?
- **2.** Prove that the iteration matrix  $G_{\omega}$  of SSOR can be expressed as

$$G_{\omega} = I - \omega(2 - \omega)(D - \omega F)^{-1}D(D - \omega E)^{-1}A.$$

**3.** We are interested in solving Poisson's equation on a rectangle with h = 1/(n+1). We want to use a nine-point formula; i.e.



Date: April 19, 2006, version 1.0.

This assignment is due in class on Monday, May 1.

Thus,

where the matrices T and B are tridiagonal.

- (a) Write down the matrices T and B.
- (b) Give the eigenvalues and eigenvectors of T and B.
- (c) Show that TB = BT.
- (d) Find the eigenvalues and eigenvectors of A. (*Hint*: First, diagonalize T and B and then reorder the rows and columns so that the matrix is block diagonal.)
- (e) Consider the block Jacobi algorithm:

$$T\mathbf{x}_{j}^{(k+1)} = \mathbf{b}_{j} - B\mathbf{x}_{j-1}^{(k)} - B\mathbf{x}_{j+1}^{(k)}$$

Give the spectral radius of  $M^{-1}N$ .

- (f) Determine the optimal  $\hat{\omega}$  for the SOR method.
- (g) Consider the differential equation

$$-u_{xx} - u_{yy} = -12x^2 - 24, \qquad 0 < x < 1, \quad 0 < y < 1,$$
  

$$u(0, y) = 12y^2,$$
  

$$u(1, y) = 1 + 12y^2,$$
  

$$u(x, 0) = x^4,$$
  

$$u(x, 1) = x^4 + 12.$$

The solution is  $u(x, y) = x^4 + 12y^2$ . Solve the differential equation using SOR for h = 1/50. Use both the natural ordering and the red/black ordering. As an initial vector, use  $\mathbf{x} = \mathbf{0}$ . Use the optimal  $\hat{\omega}$  and  $\omega = 1.0$  and see how the number of iterations differ.