CME 324: ITERATIVE METHODS
 SPRING 2005/06
 ASSIGNMENT 1

GENE H. GOLUB

1. Consider an $n \times n$ tridiagonal matrix of the form

$$
T_{\alpha}=\left[\begin{array}{cccccc}
\alpha & -1 & & & & \\
-1 & \alpha & -1 & & & \\
& -1 & \alpha & -1 & & \\
& & -1 & \alpha & -1 & \\
& & & -1 & \alpha & -1 \\
& & & & -1 & \alpha
\end{array}\right]
$$

where α is a real parameter.
(a) Verify that the eigenvalues of T_{α} are given by

$$
\lambda_{j}=\alpha-2 \cos (j \theta), \quad j=1, \ldots, n
$$

where

$$
\theta=\frac{\pi}{n+1}
$$

and that an eigenvector associated with each λ_{j} is

$$
\mathbf{q}_{j}=[\sin (j \theta), \sin (2 j \theta), \ldots, \sin (n j \theta)]^{\top}
$$

Under what condition on α does this matrix become positive definite?
(b) Now take $\alpha=2$.
(i) Will the Jacobi iteration converge for this matrix? If so, what will its convergence factor be?
(ii) Will the Gauss-Seidel iteration converge for this matrix? If so, what will its convergence factor be?
(iii) For which values of ω will the SOR iteration converge?
2. Prove that the iteration matrix G_{ω} of SSOR can be expressed as

$$
G_{\omega}=I-\omega(2-\omega)(D-\omega F)^{-1} D(D-\omega E)^{-1} A
$$

3. We are interested in solving Poisson's equation on a rectangle with $h=1 /(n+1)$. We want to use a nine-point formula; i.e.

Date: April 19, 2006, version 1.0.
This assignment is due in class on Monday, May 1.

Thus,

$$
A=\left[\begin{array}{ccccc}
T & B & & & \\
B & \ddots & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & B \\
& & & B & T
\end{array}\right]
$$

where the matrices T and B are tridiagonal.
(a) Write down the matrices T and B.
(b) Give the eigenvalues and eigenvectors of T and B.
(c) Show that $T B=B T$.
(d) Find the eigenvalues and eigenvectors of A. (Hint: First, diagonalize T and B and then reorder the rows and columns so that the matrix is block diagonal.)
(e) Consider the block Jacobi algorithm:

$$
T \mathbf{x}_{j}^{(k+1)}=\mathbf{b}_{j}-B \mathbf{x}_{j-1}^{(k)}-B \mathbf{x}_{j+1}^{(k)} .
$$

Give the spectral radius of $M^{-1} N$.
(f) Determine the optimal $\hat{\omega}$ for the SOR method.
(g) Consider the differential equation

$$
\begin{aligned}
-u_{x x}-u_{y y} & =-12 x^{2}-24, \quad 0<x<1, \quad 0<y<1, \\
u(0, y) & =12 y^{2}, \\
u(1, y) & =1+12 y^{2}, \\
u(x, 0) & =x^{4}, \\
u(x, 1) & =x^{4}+12 .
\end{aligned}
$$

The solution is $u(x, y)=x^{4}+12 y^{2}$. Solve the differential equation using SOR for $h=1 / 50$. Use both the natural ordering and the red/black ordering. As an initial vector, use $\mathbf{x}=\mathbf{0}$. Use the optimal $\hat{\omega}$ and $\omega=1.0$ and see how the number of iterations differ.

